Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.267
Filtrar
1.
PLoS Comput Biol ; 20(4): e1011855, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578817

RESUMO

The collective migration of keratinocytes during wound healing requires both the generation and transmission of mechanical forces for individual cellular locomotion and the coordination of movement across cells. Leader cells along the wound edge transmit mechanical and biochemical cues to ensuing follower cells, ensuring their coordinated direction of migration across multiple cells. Despite the observed importance of mechanical cues in leader cell formation and in controlling coordinated directionality of cell migration, the underlying biophysical mechanisms remain elusive. The mechanically-activated ion channel PIEZO1 was recently identified to play an inhibitory role during the reepithelialization of wounds. Here, through an integrative experimental and mathematical modeling approach, we elucidate PIEZO1's contributions to collective migration. Time-lapse microscopy reveals that PIEZO1 activity inhibits leader cell formation at the wound edge. To probe the relationship between PIEZO1 activity, leader cell formation and inhibition of reepithelialization, we developed an integrative 2D continuum model of wound closure that links observations at the single cell and collective cell migration scales. Through numerical simulations and subsequent experimental validation, we found that coordinated directionality plays a key role during wound closure and is inhibited by upregulated PIEZO1 activity. We propose that PIEZO1-mediated retraction suppresses leader cell formation which inhibits coordinated directionality between cells during collective migration.


Assuntos
Canais Iônicos , Queratinócitos , Movimento Celular/fisiologia
2.
Biochem Biophys Res Commun ; 710: 149861, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581949

RESUMO

During early development, the enteric nervous system forms from the migration of enteric neural crest cells (ENCCs) from the foregut to the hindgut, where they undergo proliferation and differentiation facilitated by interactions with enteric mesenchymal cells (EMCs). This study investigates the impact on ENCC migration of EMC-ENCC communication mediated by GFRA1b expressed in EMCs. GFRA1-expressing cells in day 11-12 (E11-12) mouse embryos differentiated into smooth muscle cells from E12 onwards. Observations at E12-13.5 revealed high levels of GFRA1 expression on the anti-mesenteric side of the hindgut, correlating with enhanced ENCC migration. This indicates that GFRA1 in EMCs plays a role in ENCC migration during development. Examining GFRA1 isoforms, we found high levels of GFRA1b, which lacks amino acids 140-144, in EMCs. To assess the impact of GFRA1 isoforms on EMC-ENCC communication, we conducted neurosphere drop assays. This revealed that GFRA1b-expressing cells promoted GDNF-dependent extension and increased neurite density in ENCC neurospheres. Co-culture of ENCC mimetic cells expressing RET and GFRA1a with EMC mimetic cells expressing GFRA1a, GFRA1b, or vector alone showed that only GFRA1b-expressing co-cultured cells sustained RET phosphorylation in ENCC-mimetic cells for over 120 min upon GDNF stimulation. Our study provides evidence that GFRA1b-mediated cell-to-cell communication plays a critical role in ENCC motility in enteric nervous system development. These findings contribute to understanding the cellular interactions and signaling mechanisms that underlie enteric nervous system formation and highlight potential therapeutic targets for gastrointestinal motility disorders.


Assuntos
Sistema Nervoso Entérico , Crista Neural , Animais , Camundongos , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Sistema Nervoso Entérico/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Crista Neural/metabolismo , Isoformas de Proteínas/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(16): e2317783121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588430

RESUMO

GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.


Assuntos
Córtex Cerebral , Neocórtex , Camundongos , Animais , Córtex Cerebral/metabolismo , Movimento Celular/fisiologia , Neurogênese/fisiologia , Interneurônios/fisiologia , Biomarcadores/metabolismo , Neurônios GABAérgicos/fisiologia
4.
J Vis Exp ; (205)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526071

RESUMO

During the development of the cerebral cortex, neurons and glial cells originate in the ventricular zone lining the ventricle and migrate toward the brain surface. This process is crucial for proper brain function, and its dysregulation can result in neurodevelopmental and psychiatric disorders after birth. In fact, many genes responsible for these diseases have been found to be involved in this process, and therefore, revealing how these mutations affect cellular dynamics is important for understanding the pathogenesis of these diseases. This protocol introduces a technique for time-lapse imaging of migrating neurons and glial progenitors in brain slices obtained from mouse embryos. Cells are labeled with fluorescent proteins using in utero electroporation, which visualizes individual cells migrating from the ventricular zone with a high signal-to-noise ratio. Moreover, this in vivo gene transfer system enables us to easily perform gain-of-function or loss-of-function experiments on the given genes by co-electroporation of their expression or knockdown/knockout vectors. Using this protocol, the migratory behavior and migration speed of individual cells, information that is never obtained from fixed brains, can be analyzed.


Assuntos
Neuroglia , Neurônios , Humanos , Animais , Camundongos , Imagem com Lapso de Tempo/métodos , Movimento Celular/fisiologia , Neurônios/fisiologia , Encéfalo , Córtex Cerebral , Eletroporação/métodos
5.
J Comp Neurol ; 532(3): e25599, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488687

RESUMO

During embryonic development, the olfactory placode (OP) generates migratory neurons, including olfactory pioneer neurons, cells of the terminal nerve (TN), gonadotropin-releasing hormone-1 (GnRH-1) neurons, and other uncharacterized neurons. Pioneer neurons from the OP induce olfactory bulb (OB) morphogenesis. In mice, GnRH-1 neurons appear in the olfactory system around mid-gestation and migrate via the TN axons to different brain regions. The GnRH-1 neurons are crucial in controlling the hypothalamic-pituitary-gonadal axis. Kallmann syndrome is characterized by impaired olfactory system development, defective OBs, secretion of GnRH-1, and infertility. The precise mechanistic link between the olfactory system and GnRH-1 development remains unclear. Studies in humans and mice highlight the importance of the prokineticin-2/prokineticin-receptor-2 (Prokr2) signaling pathway in OB morphogenesis and GnRH-1 neuronal migration. Prokr2 loss-of-function mutations can cause Kallmann syndrome (KS), and hence the Prokr2 signaling pathway represents a unique model to decipher the olfactory/GnRH-1 connection. We discovered that Prokr2 is expressed in the TN neurons during the critical period of GnRH-1 neuron formation, migration, and induction of OB morphogenesis. Single-cell RNA sequencing identified that the TN is formed by neurons distinct from the olfactory neurons. The TN neurons express multiple genes associated with KS. Our study suggests that the aberrant development of pioneer/TN neurons might cause the KS spectrum.


Assuntos
Síndrome de Kallmann , Humanos , Animais , Camundongos , Síndrome de Kallmann/genética , Síndrome de Kallmann/metabolismo , Neurônios/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Encéfalo/metabolismo , Axônios/metabolismo , Bulbo Olfatório/metabolismo , Movimento Celular/fisiologia
6.
Biomolecules ; 14(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38540713

RESUMO

The impaired invasion ability of trophoblast cells is related to the occurrence of preeclampsia (PE). We previously found that pregnancy-specific beta-1-glycoprotein 1 (PSG1) levels were decreased in the serum of individuals with early-onset preeclampsia (EOPE). This study investigated the effect of PSG1 on Orai1-mediated store-operated calcium entry (SOCE) and the Akt signaling pathway in human trophoblast cell migration. An enzyme-linked immunosorbent assay (ELISA) was used to determine the level of PSG1 in the serum of pregnant women with EOPE. The effects of PSG1 on trophoblast proliferation and migration were examined using cell counting kit-8 (CCK8) and wound healing experiments, respectively. The expression levels of Orai1, Akt, and phosphorylated Akt (p-Akt) were determined through Western blotting. The results confirmed that the serum PSG1 levels were lower in EOPE women than in healthy pregnant women. The PSG1 treatment upregulated the protein expression of Orai1 and p-Akt. The selective inhibitor of Orai1 (MRS1845) weakened the migration-promoting effect mediated by PSG1 via suppressing the Akt signaling pathway. Our findings revealed one of the mechanisms possibly involved in EOPE pathophysiology, which was that downregulated PSG1 may reduce the Orai1/Akt signaling pathway, thereby inhibiting trophoblast migration. PSG1 may serve as a potential target for the treatment and diagnosis of EOPE.


Assuntos
Amarelo de Eosina-(YS)/análogos & derivados , Fosfatidiletanolaminas , Pré-Eclâmpsia , Proteínas Proto-Oncogênicas c-akt , Feminino , Gravidez , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pré-Eclâmpsia/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição , Movimento Celular/fisiologia , Glicoproteínas , Proliferação de Células/fisiologia
7.
Rep Prog Phys ; 87(5)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38518358

RESUMO

Single and collective cell migration are fundamental processes critical for physiological phenomena ranging from embryonic development and immune response to wound healing and cancer metastasis. To understand cell migration from a physical perspective, a broad variety of models for the underlying physical mechanisms that govern cell motility have been developed. A key challenge in the development of such models is how to connect them to experimental observations, which often exhibit complex stochastic behaviours. In this review, we discuss recent advances in data-driven theoretical approaches that directly connect with experimental data to infer dynamical models of stochastic cell migration. Leveraging advances in nanofabrication, image analysis, and tracking technology, experimental studies now provide unprecedented large datasets on cellular dynamics. In parallel, theoretical efforts have been directed towards integrating such datasets into physical models from the single cell to the tissue scale with the aim of conceptualising the emergent behaviour of cells. We first review how this inference problem has been addressed in both freely migrating and confined cells. Next, we discuss why these dynamics typically take the form of underdamped stochastic equations of motion, and how such equations can be inferred from data. We then review applications of data-driven inference and machine learning approaches to heterogeneity in cell behaviour, subcellular degrees of freedom, and to the collective dynamics of multicellular systems. Across these applications, we emphasise how data-driven methods can be integrated with physical active matter models of migrating cells, and help reveal how underlying molecular mechanisms control cell behaviour. Together, these data-driven approaches are a promising avenue for building physical models of cell migration directly from experimental data, and for providing conceptual links between different length-scales of description.


Assuntos
Desenvolvimento Embrionário , Modelos Biológicos , Movimento Celular/fisiologia
8.
Dev Neurobiol ; 84(2): 74-92, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509451

RESUMO

The organization of neurons into distinct layers, known as lamination, is a common feature of the nervous system. This process, which arises from the direct coupling of neurogenesis and neuronal migration, plays a crucial role in the development of the cerebellum, a structure exhibiting a distinct folding cytoarchitecture with cells arranged in discrete layers. Disruptions to neuronal migration can lead to various neurodevelopmental disorders, highlighting the significance of understanding the molecular regulation of lamination. We report a role Mllt11/Af1q/Tcf7c (myeloid/lymphoid or mixed-lineage leukemia; translocated to chromosome 11/All1 fused gene from chromosome 1q, also known as Mllt11 transcriptional cofactor 7; henceforth referred to Mllt11) in the migration of cerebellar granule cells (GCs). We now show that Mllt11 plays a role in both the tangential and radial migration of GCs. Loss of Mllt11 led to an accumulation of GC precursors in the rhombic lip region and a reduction in the number of GCs successfully populating developing folia. Consequently, this results in smaller folia and an overall reduction in cerebellar size. Furthermore, analysis of the anchoring centers reveals disruptions in the perinatal folia cytoarchitecture, including alterations in the Bergmann glia fiber orientation and reduced infolding of the Purkinje cell plate. Lastly, we demonstrate that Mllt11 interacts with non-muscle myosin IIB (NMIIB) and Mllt11 loss-reduced NMIIB expression. We propose that the dysregulation of NMIIB underlies altered GC migratory behavior. Taken together, the findings reported herein demonstrate a role for Mllt11 in regulating neuronal migration within the developing cerebellum, which is necessary for its proper neuroanatomical organization.


Assuntos
Cerebelo , Estruturas Embrionárias , Metencéfalo/embriologia , Neurônios , Gravidez , Feminino , Humanos , Neurônios/metabolismo , Neuroglia/metabolismo , Movimento Celular/fisiologia
9.
J Cancer Res Clin Oncol ; 150(3): 155, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526702

RESUMO

PURPOSE: Triple-negative breast cancer (TNBC) features high aggressiveness, metastasis rate, drug resistance as well as poor prognosis. Osteopontin (OPN) is a key protein in the process of osteogenesis and has emerged as a new tumor marker in recent years. METHODS: Cell viability was tested with the CCK-8 kit. Transwell and wound healing were adopted to test cell invasive and migratory abilities. Tumor sphere formation was detected by tumor sphere formation assay. Human umbilical vein endothelial cell (HUVEC) tube formation assay was used to measure the angiogenesis of tumor cells. Western blot was applied for the estimation of the expression of cancer stem cell markers, angiogenesis-, signaling pathway-related proteins as well as OPN. Bioinformatics tools predicted OPN expression in breast cancer tissues. The levels of oxidative stress-related markers were assessed with ELISA. Following the overexpression of OPN in MD-MB-436 cells and the addition of the PI3K/AKT/mTOR pathway inhibitor LY294002, the aforementioned functional experiments were implemented again to investigate the mechanism. Finally, in vivo experiments of tumor-bearing mice were performed for further verification. RESULTS: The proliferative, invasive, migratory and tumor sphere formation capabilities as well as angiogenesis of TNBC cells were conspicuously increased in contrast to non-TNBC cell lines. OPN expression in TNBC tissues and cells was dramatically enhanced. OPN upregulation significantly elevated cell proliferative, invasive and migratory capabilities as well as tumor sphere formation and angiogenesis. The mechanism might be achieved by activating PI3K/AKT/mTOR signaling to regulate glutathione peroxidase 4 (GPX4)-mediated anti-lipid peroxidation. CONCLUSION: OPN promoted tumor sphere formation and angiogenesis in TNBC by activating the PI3K/AKT/mTOR pathway to regulate GPX4-mediated anti-lipid peroxidation levels.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Osteopontina/metabolismo , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Movimento Celular/fisiologia
10.
Exp Cell Res ; 437(1): 113979, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38462209

RESUMO

INTRODUCTION: To explore the potential impact of 27-hydroxycholesterol (27-HC) on trophoblast cell function in pre-eclampsia. RESULTS: The levels of 27-HC and the expression of CYP27A1 are upregulated in clinical samples of PE. Furthermore, high concentrations of 27-HC can inhibit the invasion and migration ability of trophoblast cells in vitro, and this inhibitory effect is weakened after LXR silencing. In HTR8/SVneo cells treated with 27-HC, the expression of ABCA1/ABCG1 are increased. Finally, we established a mouse model of PE using l-NAME (N-Nitro-l-Arginine Methyl Ester). We found an increase in the levels of 27-HC in the peripheral blood serum of the PE mouse model, and an upregulation of CYP27A1 and LXR expressions in the placenta of the PE mouse model. CONCLUSION: 27-HC inhibits the invasion and migration ability of trophoblast cells by activating the LXR signaling pathway, which is involved in the pathogenesis of Pre-eclampsia(PE).


Assuntos
Pré-Eclâmpsia , Gravidez , Humanos , Camundongos , Feminino , Animais , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Trofoblastos/metabolismo , Placenta/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima , Movimento Celular/fisiologia , Proliferação de Células/fisiologia
11.
Integr Biol (Camb) ; 162024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38516930

RESUMO

A critical phase of wound healing is the coordinated movement of keratinocytes. To this end, bioglasses show promise in speeding healing in hard tissues and skin wounds. Studies suggest that bioglass materials may promote wound healing by inducing positive cell responses in proliferation, growth factor production, expression of angiogenic factors, and migration. Precise details of how bioglass may stimulate migration are unclear, however, because the common assays for studying migration in wound healing focus on simplified outputs like rate of migration or total change in wound area. These outputs are limited in that they represent the average behavior of the collective, with no connection between the motion of the individual cells and the collective wound healing response. There is a need to apply more refined tools that identify how the motion of the individual cells changes in response to perturbations, such as by bioglass, and in turn affects motion of the cell collective. Here, we apply an integrative biology strategy that combines an in vitro wound healing assay using primary neonatal human keratinocytes with time lapse microscopy and quantitative image analysis. The resulting data set provides the cell velocity field, from which we define key metrics that describe cooperative migration phenotypes. Treatment with growth factors led to faster single-cell speeds compared to control, but the migration was not cooperative, with cells breaking away from their neighbors and migrating as individuals. Treatment with calcium or bioglass led to migration phenotypes that were highly collective, with greater coordination in space compared to control. We discuss the link between bioglass treatment and observed increases in free calcium ions that are hypothesized to promote these distinct coordinated behaviors in primary keratinocytes. These findings have been enabled by the unique descriptors developed through applying image analysis to interpret biological response in migration models. Insight Box/Paragraph Statement: Bioglasses are important materials for tissue engineering and have more recently shown promise in skin and wound healing by mechanisms tied to their unique ionic properties. The precise details, however, of how cell migration may be affected by bioglass are left unclear by traditional cell assay methods. The following describes the integration of migration assays of keratinocytes, cells critical for skin and wound healing, with the tools of time lapse microscopy and image analysis to generate a quantitative description of coordinated, tissue-like migration behavior, stimulated by bioglass, that would not have been accessible without the combination of these analytical tools.


Assuntos
Cálcio , Cerâmica , Queratinócitos , Recém-Nascido , Humanos , Cálcio/metabolismo , Movimento Celular/fisiologia , Biologia
12.
Elife ; 122024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512724

RESUMO

Radial neuronal migration is a key neurodevelopmental event for proper cortical laminar organization. The multipolar-to-bipolar transition, a critical step in establishing neuronal polarity during radial migration, occurs in the subplate/intermediate zone (SP/IZ), a distinct region of the embryonic cerebral cortex. It has been known that the extracellular matrix (ECM) molecules are enriched in the SP/IZ. However, the molecular constitution and functions of the ECM formed in this region remain poorly understood. Here, we identified neurocan (NCAN) as a major chondroitin sulfate proteoglycan in the mouse SP/IZ. NCAN binds to both radial glial-cell-derived tenascin-C (TNC) and hyaluronan (HA), a large linear polysaccharide, forming a ternary complex of NCAN, TNC, and HA in the SP/IZ. Developing cortical neurons make contact with the ternary complex during migration. The enzymatic or genetic disruption of the ternary complex impairs radial migration by suppressing the multipolar-to-bipolar transition. Furthermore, both TNC and NCAN promoted the morphological maturation of cortical neurons in vitro. The present results provide evidence for the cooperative role of neuron- and radial glial-cell-derived ECM molecules in cortical development.


Assuntos
Matriz Extracelular , Neurônios , Animais , Camundongos , Neurônios/fisiologia , Matriz Extracelular/metabolismo , Córtex Cerebral/metabolismo , Movimento Celular/fisiologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo
13.
Soft Matter ; 20(11): 2610-2623, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38426537

RESUMO

Adhesive dynamics of cells plays a critical role in determining different biophysical processes orchestrating health and disease in living systems. While the rolling of cells on functionalised substrates having similarity with biophysical pathways appears to be extensively discussed in the literature, the effect of an external stimulus in the form of an electric field on the same remains underemphasized. Here, we bring out the interplay of fluid shear and electric field on the rolling dynamics of adhesive cells in biofunctionalised micro-confinements. Our experimental results portray that an electric field, even restricted to low strengths within the physiologically relevant regimes, can significantly influence the cell adhesion dynamics. We quantify the electric field-mediated adhesive dynamics of the cells in terms of two key parameters, namely, the voltage-altered rolling velocity and the frequency of adhesion. The effect of the directionality of the electric field with respect to the flow direction is also analysed by studying cellular migration with electrical effects acting both along and against the flow. Our experiment, on one hand, demonstrates the importance of collagen functionalisation in the adhesive dynamics of cells through micro channels, while on the other hand, it reveals how the presence of an axial electric field can lead to significant alteration in the kinetic rate of bond breakage, thereby modifying the degree of cell-substrate adhesion and quantifying in terms of the adhesion frequency of the cells. Proceeding further forward, we offer a simple theoretical explanation towards deriving the kinetics of cellular bonding in the presence of an electric field, which corroborates favourably with our experimental outcome. These findings are likely to offer fundamental insights into the possibilities of local control of cellular adhesion via electric field mediated interactions, bearing critical implications in a wide variety of medical conditions ranging from wound healing to cancer metastasis.


Assuntos
Adesivos , Sinais (Psicologia) , Adesão Celular , Fenômenos Biofísicos , Movimento Celular/fisiologia
14.
Cells ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474388

RESUMO

Dendritic cell (DC) migration from peripheral tissues via afferent lymphatic vessels to draining lymph nodes (dLNs) is important for the organism's immune regulation and immune protection. Several lymphatic endothelial cell (LEC)-expressed adhesion molecules have thus far been found to support transmigration and movement within the lymphatic vasculature. In this study, we investigated the contribution of CD112, an adhesion molecule that we recently found to be highly expressed in murine LECs, to this process. Performing in vitro assays in the murine system, we found that transmigration of bone marrow-derived dendritic cells (BM-DCs) across or adhesion to murine LEC monolayers was reduced when CD112 was absent on LECs, DCs, or both cell types, suggesting the involvement of homophilic CD112-CD112 interactions. While CD112 was highly expressed in murine dermal LECs, CD112 levels were low in endogenous murine dermal DCs and BM-DCs. This might explain why we observed no defect in the in vivo lymphatic migration of adoptively transferred BM-DCs or endogenous DCs from the skin to dLNs. Compared to murine DCs, human monocyte-derived DCs expressed higher CD112 levels, and their migration across human CD112-expressing LECs was significantly reduced upon CD112 blockade. CD112 expression was also readily detected in endogenous human dermal DCs and LECs by flow cytometry and immunofluorescence. Upon incubating human skin punch biopsies in the presence of CD112-blocking antibodies, DC emigration from the tissue into the culture medium was significantly reduced, indicating impaired lymphatic migration. Overall, our data reveal a contribution of CD112 to human DC migration.


Assuntos
Células de Langerhans , Vasos Linfáticos , Nectinas , Animais , Humanos , Camundongos , Movimento Celular/fisiologia , Endotélio Linfático , Células de Langerhans/fisiologia , Nectinas/metabolismo
15.
ACS Appl Mater Interfaces ; 16(8): 9956-9967, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349958

RESUMO

Microchannels often serve as highways for cancer migration, and their topology largely determines the migration efficiency. Curvature, a topological parameter in biological systems, has recently been reported to be efficient in guiding cell polarization and migration. Curvature varies widely along curved microchannels, while its influence on cell migration remains elusive. Here, we recapitulated the curved microchannels, as observed in clinical tumor tissues with hydrogels, and studied how cancer cells respond to curvature. We found that cells bend more significantly in a larger curvature and exhibit less spreading as well as lower motility. The underlying mechanism is probably based on the hindrance of the movement of cytoskeletal molecules at the curved microchannel walls. Collectively, our results demonstrated that the accelerated actin retrograde flow rate under local curvature has an effective negative regulation on cell motility and morphology, leading to shortened and bent cell morphologies as well as hampered cell migration efficiency.


Assuntos
Actinas , Neoplasias , Humanos , Movimento Celular/fisiologia , Neoplasias/patologia , Citoesqueleto
16.
J Pathol ; 263(1): 99-112, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411280

RESUMO

Desmoglein-2 (DSG2) is a transmembrane glycoprotein belonging to the desmosomal cadherin family, which mediates cell-cell junctions; regulates cell proliferation, migration, and invasion; and promotes tumor development and metastasis. We previously showed serum DSG2 to be a potential biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), although the significance and underlying molecular mechanisms were not identified. Here, we found that DSG2 was increased in ESCC tissues compared with adjacent tissues. In addition, we demonstrated that DSG2 promoted ESCC cell migration and invasion. Furthermore, using interactome analysis, we identified serine/threonine-protein kinase D2 (PRKD2) as a novel DSG2 kinase that mediates the phosphorylation of DSG2 at threonine 730 (T730). Functionally, DSG2 promoted ESCC cell migration and invasion dependent on DSG2-T730 phosphorylation. Mechanistically, DSG2 T730 phosphorylation activated EGFR, Src, AKT, and ERK signaling pathways. In addition, DSG2 and PRKD2 were positively correlated with each other, and the overall survival time of ESCC patients with high DSG2 and PRKD2 was shorter than that of patients with low DSG2 and PRKD2 levels. In summary, PRKD2 is a novel DSG2 kinase, and PRKD2-mediated DSG2 T730 phosphorylation promotes ESCC progression. These findings may facilitate the development of future therapeutic agents that target DSG2 and DSG2 phosphorylation. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Fosforilação , Proteína Quinase D2 , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Serina , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Desmogleína 2/genética , Desmogleína 2/metabolismo
17.
Cell Rep ; 43(3): 113866, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416638

RESUMO

To mount an adaptive immune response, dendritic cells must migrate to lymph nodes to present antigens to T cells. Critical to 3D migration is the nucleus, which is the size-limiting barrier for migration through the extracellular matrix. Here, we show that inflammatory activation of dendritic cells leads to the nucleus becoming spherically deformed and enables dendritic cells to overcome the typical 2- to 3-µm diameter limit for 3D migration through gaps in the extracellular matrix. We show that the nuclear shape change is partially attained through reduced cell adhesion, whereas improved 3D migration is achieved through reprogramming of the actin cytoskeleton. Specifically, our data point to a model whereby the phosphorylation of cofilin-1 at serine 41 drives the assembly of a cofilin-actomyosin ring proximal to the nucleus and enhances migration through 3D collagen gels. In summary, these data describe signaling events through which dendritic cells deform their nucleus and enhance their migratory capacity.


Assuntos
Fatores de Despolimerização de Actina , Actomiosina , Fatores de Despolimerização de Actina/metabolismo , Movimento Celular/fisiologia , Actomiosina/metabolismo , Citocinese , Cofilina 1/metabolismo , Matriz Extracelular/metabolismo , Células Dendríticas/metabolismo
18.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38383722

RESUMO

In mammalian neocortex development, every cohort of newborn neurons is guided toward the marginal zone, leading to an "inside-out" organization of the 6 neocortical layers. This migratory pattern is regulated by the extracellular glycoprotein Reelin. The reeler mouse shows a homozygous mutation of the reelin gene. Using RNA in situ hybridization we could demonstrate that the Reelin-deficient mouse cortex (male and female) displays an increasing lamination defect along the rostro-caudal axis that is characterized by strong cellular intermingling, but roughly reproduces the "inside-out" pattern in rostral cortex, while caudal cortex shows a relative inversion of neuronal positioning ("outside-in"). We found that in development of the reeler cortex, preplate-splitting is also defective with an increasing severity along the rostro-caudal axis. This leads to a misplacement of subplate neurons that are crucial for a switch in migration mode within the cortical plate. Using Flash Tag labeling and nucleoside analog pulse-chasing, we found an according migration defect within the cortical plate, again with a progressive severity along the rostro-caudal axis. Thus, loss of one key player in neocortical development leads to highly area-specific (caudally pronounced) developmental deficiencies that result in multiple roughly opposite rostral versus caudal adult neocortical phenotypes.


Assuntos
Moléculas de Adesão Celular Neuronais , Neurônios , Humanos , Animais , Masculino , Feminino , Camundongos , Moléculas de Adesão Celular Neuronais/metabolismo , Neurônios/fisiologia , Córtex Cerebral/metabolismo , Fenótipo , Proteínas da Matriz Extracelular/genética , Movimento Celular/fisiologia , Mamíferos/metabolismo
19.
J Immunol ; 212(7): 1075-1080, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363205

RESUMO

B cell trafficking involves the coordinated activity of multiple adhesive and cytokine-receptor interactions, and the players in this process are not fully understood. In this study, we identified the tetraspanin CD53 as a critical regulator of both normal and malignant B cell trafficking. CXCL12 is a key chemokine in B cell homing to the bone marrow and secondary lymphoid organs, and both normal and malignant B cells from Cd53-/- mice have reduced migration toward CXCL12 in vitro, as well as impaired marrow homing in vivo. Using proximity ligation studies, we identified the CXCL12 receptor, CXCR4, as a novel, to our knowledge, CD53 binding partner. This interaction promotes receptor function, because Cd53-/- B cells display reduced signaling and internalization of CXCR4 in response to CXCL12. Together, our data suggest that CD53 interacts with CXCR4 on both normal and malignant B cells to promote CXCL12 signaling, receptor internalization, and marrow homing.


Assuntos
Linfócitos B , Medula Óssea , Animais , Camundongos , Medula Óssea/metabolismo , Linfócitos B/metabolismo , Quimiocina CXCL12/metabolismo , Transdução de Sinais , Tetraspaninas/metabolismo , Proteínas de Transporte/metabolismo , Receptores CXCR4/metabolismo , Movimento Celular/fisiologia , Células da Medula Óssea/metabolismo
20.
ACS Biomater Sci Eng ; 10(3): 1364-1378, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38330438

RESUMO

Cell migration profoundly influences cellular function, often resulting in adverse effects in various pathologies including cancer metastasis. Directly assessing and quantifying the nanoscale dynamics of living cell structure and mechanics has remained a challenge. At the forefront of cell movement, the flat actin modules─the lamellipodium and the lamellum─interact to propel cell migration. The lamellipodium extends from the lamellum and undergoes rapid changes within seconds, making measurement of its stiffness a persistent hurdle. In this study, we introduce the fast-quantitative imaging (fast-QI) mode, demonstrating its capability to simultaneously map both the lamellipodium and the lamellum with enhanced spatiotemporal resolution compared with the classic quantitative imaging (QI) mode. Specifically, our findings reveal nanoscale stiffness gradients in the lamellipodium at the leading edge, where it appears to be slightly thinner and significantly softer than the lamellum. Additionally, we illustrate the fast-QI mode's accuracy in generating maps of height and effective stiffness through a streamlined and efficient processing of force-distance curves. These results underscore the potential of the fast-QI mode for investigating the role of motile cell structures in mechanosensing.


Assuntos
Actinas , Citoesqueleto , Actinas/química , Movimento Celular/fisiologia , Fibroblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...